
www.manaraa.com

Universal Plans for Reactive Robotsin Unpredictable EnvironmentsM.J. SchoppersAdvanced Decision Systems201 San Antonio Circle #286, Mountain View, CA 94040AbstractIn: Proc 10th IJCAI, 1987, 1039ff.To date, reactive robot behavior has been achievedonly through manual programming. This paper de-scribes a new kind of plan, called a \universal plan",which can be synthesized automatically, yet generatesappropriate behavior in unpredictable environments.In classical planning work, problems were posed withunique initial and �nal world states; in my approach aproblem speci�es only a goal condition. The planner isthus unable to commit to any speci�c future course ofevents but must specify appropriate reactions for an-ticipated situations. An alternative conception is thatone universal plan compactly represents every classi-cal plan. Which part of the universal plan is executeddepends entirely on how the environment behaves atexecution time.Universal plans are constructed from state-space oper-ator schemas by a nonlinear planner. They explicitlyidentify predicates requiring monitoring at each mo-ment of execution, and provide for sabotage, serendip-ity and failure without requiring replanning.1. Introduction1.1. Scope of this PaperThe work described herein continues my e�orts to-ward synthetic reactivity, i.e. the automatic synthesisof robot programs capable of realtime performance inan unpredictable and/or dynamic world. This paperpresents a solution to the problem of achieving a sat-isfying integration of goal-directed advance planningand sensor-driven reaction, without resorting to hu-man programming.By now, the problems with the so-called \classicalapproach" to planning are old news. Without goinginto tedious detail: state space planning requires agreat deal of information up front, is time-consuming,and delays the arrival of suitable actions; its plans musteventually be very detailed or else may risk failure;even so, they are brittle, being unsuited to temporal

continuity and uncertainty. The core problem is one ofover-commitment.The use of abstract plans, of partial plans, and of\reactive procedures", side-steps the early commit-ment problem by interleaving plan re�nement and ex-ecution. The penalty is that acting on an incompleteplan may make the goal permanently unachievable: theplanner may paint itself into a corner.The work reported in this paper is the �rst fruitsof a larger project concerned with the integration ofplanning, executing, sensing, and reacting. As a �rststep, that project will drive a robot arm in an envi-ronment that is rather less cooperative than a blocksworld. The focus of the work is not on the robotics buton the planning, however, and this paper will be evennarrower, concentrating on the plan representation andinterpreter I have developed.1.2. Mischief in the Blocks WorldWe are to solve the following benchmark problem. Ihave cast this problem in terms of a blocks world, toclarify (by way of contrast with the familiar) the issuesinvolved.As in most blocks worlds, all the blocks are cubicaland of unknown size; every block can be stackedon every other; and the usual 1-on-1 stacking rulesapply. In addition we have a robot arm with ahand as our only means of moving blocks. On theother side of the table from the robot there is amischievous baby who will atten block towers,snatch blocks out of the robot's hand, and eventhrow blocks at the robot. The robot may notsnatch blocks back, may not touch the baby, andcannot keep anything out of the baby's reach. Aspartial compensation we are given an unlimitedset of sensing devices. The robot is to achievethe usual tower of blocks: a on b on c. Deviseplan execution software enabling the robot to copee�ciently with this domain.

www.manaraa.com

This problem highlights some issues that are challengesto the state of the art in AI and robotics:� The robot's knowledge is incomplete, lacking theblocks' sizes. The missing information must be mit-igated if the hand is to pick up any blocks.� The problem does not specify the current state ofthe world { neither the current locations of blocks,nor the position of the hand.� The environment is capricious, allowing failure, sab-otage and serendipity. Actions may not achieve theirintended e�ects, and e�ects already achieved maynot persist.These items all have to do with the robot's behaviorin the face of uncertainty, whether due to ignorance orto a dynamic environment beyond the robot's control.The work reported here is the �rst example of problem-independent synthetic reactivity.1.3. Solution ApproachAccurate prediction being notoriously di�cult, I havemoved toward the other extreme, relying heavily onreaction. That in itself is not novel. The novelty ofmy approach arises from the fact that the representa-tion I use to encode robot behaviors speci�es appropri-ate reactions to every possible situation within a givendomain, yet can be synthesized automatically and atmoderate computational cost.Universal plans convey highly conditional advice ofthe form:If a situation satisfying condition P should everarise while you are trying to achieve goal G, thenthe appropriate response is action A.There is no commitment to any particular sequence ofevents; in fact, universal plans contain little sequenceof any kind. Instead, the task of the planner is to par-tition the set of possible situations on the basis of thereaction each situation requires. At execution time theactual situation is classi�ed, and the response plannedfor that class of situation is then performed. Thusthe behavior of an agent executing universal plans de-pends critically on which situations arise at executiontime. Such reactivity allows universal plans to gener-ate appropriate behavior even in unpredictable envi-ronments.The behavior of agents executing universal plans isalso goal-directed. If the world is cooperative longenough, each action will have its expected e�ects andthe net behavior will be indistinguishable from thatgenerated by a linear plan. No matter how the en-vironment behaves, however, a universal plan alwaysselects the action that would, in a cooperative world,move the current situation toward the goal.

failure
situation

preds

yes/no

actions

indexingplanning

action
descriptions

wanted
situation

plan

failure

initial
situation

sensing

effecting

planning effectingsensing
plan actions

current
situation

(a)

(b)

action
descriptions

wanted
situationFigure 1: Plan monitoring vs planned reaction.The di�erence between the classical planning ap-proach and that of universal plans is summarized inFigure 1. In classical planning work, problems areposed with a speci�c initial world state, and plans arerestricted not only to a particular set of situations butalso to a speci�c ordering on those situations.1 Anypredicates associated with individual actions are usedonly to determine whether an action has been com-pleted, and whether it was successful. If so, the nextaction to be executed is determined from the sequenceimposed by the planner, not from any knowledge of theenvironment. When an action fails to produce a \go"outcome, the only recourse is to replanning, beginningwith the newly produced situation.In my approach a problem speci�es only the goalcondition { no initial state and no unique �nal state {so that the planner cannot over-commit to a speci�cfuture course of events. Instead the planner must antic-ipate possible situations and predetermine its reactionsin those situations. The sensing module takes over thefunction previously served by sequencing, namely thatof indexing into the set of available actions. And be-cause the planner does not commit itself to a particu-lar future, replanning is no longer necessary, no matterwhat serendipity, sabotage or failure takes place.The fact that universal plans can be generated au-tomatically allows for a rather novel perspective:Planning is the goal-directed selection of reactionsto possible situations.This view bridges the chasm between goal-directedplanning and situation-driven reaction. It makes allbehavior reactive, but allows for rationality in the prior1Triangle tables are restricted to a subset of possiblesituations but not to a speci�c ordering. See Section 5.

www.manaraa.com

speed-up:vlimit =paMAX jdNOW j+ v2now=2vOUT = min(vlimit; vMAX)aOUT = aMAX arrived = (s=0 ^ vnow=0)good�dirn = (s�vnow > 0)limit�speed = (vnow � vlimit)arrived NO-OP~arrived good-dirn limit-speed . . SLOW-DOWN~arrived good-dirn ~limit-speed . . SPEED-UP~arrived ~good-dirn. SLOW-DOWN SLOW-DOWN SPEED-UP

arrived

good-dirn limit-speed

SLOW-DOWN

<a) b) c)Figure 2: Implementing arm motions with feedback.selection of reactions. The notion of an action's suc-cess becomes irrelevant to the process of plan execu-tion; this reects the intuition that no plan is knowablyfoolproof until after it has succeeded. Just as successcannot be known until execution time, so the actualcourse of events cannot be known in advance: the ideaof a procedure is an abstraction, practically applicableonly in non-real-world environments.2 To realize plansas procedures is to equate plan structure with the se-riality of behavior-through-time. In other words, someparticular sequence of events is inescapable at execu-tion time, but is a major over-commitment at planningtime. 2. Inputs to the Planner2.1. Primitive ActionsThat the planner must drive a real robot arm hassome important consequences. For example: we can nolonger pretend that it is irrelevant how big the blocksare. In fact we must consider how to cope with posi-tions and distances in general. The approach I describehere is well below the level of abstraction adopted byprevious blocks world planners, and is borrowed in partfrom the REX project at SRI (cf. Section 5).The readings returned by all sensors are integers.The speed and acceleration values sent to the robotarm are also integers. In between, the most primitiveactions are numeric functions. For example, if the armis at xnow and we want it to stop at xf in the shortestpossible time, we de�ne speed-up as in Figure 2a.The functions for a slow-down stage are similar.Whenever we get new values for xnow or vnow, or evenfor xf , the arm's speed and acceleration can be ad-justed to suit. Of course, xnow and vnow are constantlychanging. Thus, computing new arm motion parame-ters from current sensor readings establishes a feedbackloop.We must also specify when each stage should be used(Figure 2b). There are three relevant predicates: is thearm at its destination? moving in the right direction?2Such as blocks worlds and computer programming.

moving as fast as its destination will allow? Dependingon the truth or falsity of these predicates, one of slow-down and speed-up will be imposed between sensorsand e�ectors.Notice that these primitive actions are very di�erentfrom traditional plan primitives in that they representI/O conditions to be maintained for some unspeci�edlength of time, not conditions to be achieved in theworld. How long a given constraint is in force dependsentirely on the environment. Moreover, there is noparticular order in which speed-up and slow-downmust be executed: that too is determined by the envi-ronment.At this point we must diverge from the REX projectmentioned earlier. By design, Figure 2b can be ex-pressed as the \universal plan" of Figure 2c.A synthesizer of universal plans must determine un-der what conditions the feedback functions should beimposed so as to achieve some condition in the world.How the necessary information is communicated to theplanner is the topic of the next Section, which proceedswith \actions" at the level of \move to X". The mainpoint of the present Section was to show that whatlies below that level of abstraction is in fact identicalto what lies above: even the most primitive sensori-motor feedback constraints can be controlled by uni-versal plans.2.2. Action DescriptionsThe task of decomposing block transfers into moreprimitive actions reveals an interesting ambiguity inthe interpretation of \action". On the one hand, fromthe robotics perspective it is immediately obvious that�ve physical motions will su�ce, namely: close thehand as far as possible; open the hand completely;lower the hand vertically as far as possible; raise thehand vertically to some maximum height; and movethe hand horizontally until above some target location.Each of these motions can be implemented straightfor-wardly by feedback functions as described in the pre-vious Section. Hence the blocks world domain requiresonly �ve physical actions. On the other hand, captur-

www.manaraa.com

lowering = +> ~topwide +> around(X)holding(X) over(table) +> on(X,table)holding(X) block(Y) clear(Y) +> on(X,Y)raising = +> ~bottomaround(X) +> midholding(X) on(X,table) +> midholding(X) on(X,Y) block(Y) +> mid clear(Y)opening = hand-empty +> ~closedholding(X) ~on(X,none) +> around(X)closing = +> ~widearound(X) +> holding(X)lateraling = top +> over(Z)Figure 3: Blocks world e�ect descriptions.ing the blocks world at the level of such actions requiresabout 30 STRIPS-like operator schemas. Which are weto regard as an action: the actual motion, as identi-�ed by the function driving the arm, or what actuallyhappens, as described by the operator schema?Contrary to AI tradition, I chose to conceive of ac-tions in terms of the robotic functions used to realizethem, and to regard operator schemas as e�ect descrip-tions. Now the same action can produce multiple ef-fects depending on the environment in which it is ex-ecuted (cp. (Sridharan&Hawrusik 1977)). Raising theempty hand is precisely the same \action" as raisingthe hand while holding a block, yet their e�ects aredi�erent, and moreover, each e�ect is necessary at dif-ferent times. The problems and bene�ts of planningwith alternative e�ects cannot be detailed here, how-ever.When an action is described to the planner (Fig-ure 3), the pre- and post-conditions of its e�ects neednot be complete: my planner utilizes an extension ofthe logic of Ginsburg (Ginsberg 1985) to infer missingpre- and post-conditions (e.g. that, to lower the handaround block X, the hand must be over X to beginwith).2.3. Domain ConstraintsI will not discuss the logic that determines which worldstates are possible and impossible; it is intuitively ob-vious (e.g. if the hand is open it can't be holding any-thing). What is crucial, however, is that the plannercan deal with partially-determined world states. Thatoccasionally involves facts of the form \Something is onblock a". In predicate logic (and all previous blocks-world planners) such facts would be encoded as ex-

istentially quanti�ed formulae within a world statemodel, and would give rise to considerable di�cultiesin ensuring a consistent world description. I solve thisproblem by using a possible-worlds TMS (McAllester1978) to encode and compute with world descriptions.This particular TMS will accept clauses of the formon(b,a) _ on(c,a) _ clear(a).The fact \Something is on block a" is encoded as:clear(a), which means that one of on(b,a) oron(c,a) must be true for the above clause to remainvalid. There is no need for an explicit existential inthe world description: there is an implicit existentialin the restriction logic.The planner manipulates multiple TMS instances,all sharing the same logic but having di�erent truthvalue assignments. Thus, the planner can representpartial knowledge of the world at any point in the plan.More will be said in Section 4 about the importance ofthis for universal plan synthesis.2.4. The GoalThe problem to be solved is posed to the planner asa condition to be achieved, not as a particular worldstate. For the problem discussed in the next sectionthe goal is on(a,b)^top { how to stack a onto b andleave it there { and there are still 24 world states thatsatisfy this goal condition (the �nal location of c andthe �nal state of the hand are variable). The initialstate of the world is irrelevant at planning time.3. Universal Plans3.1. InterpretationThe plan interpreter �nds the action that is relevantto the current state of the world by using the com-pleted universal plan as a decision tree. The pre- andpost-conditions of operators are evaluated in the cur-rent real world, and so determine, at each node, whichbranch should be traversed next. Exactly how thesedecisions are made will be detailed below. Eventuallythe interpreter arrives at the currently appropriate ac-tion. Just as that action's location in the tree speci�esthe path necessary to reach it, so its being chosen asappropriate speci�es what conditions are true in theworld. As long as those conditions remain true, thechosen action remains appropriate. When they change,the interpreter must search the tree again for the nextappropriate action.The universal plan shown in Figure 4 is a plan tostack one block onto another: it realizes the veryblock-stacking action that other planners have takenfor granted, and it is not trivial. We can extract fromthe plan a series of partial world descriptions withspeci�cations of an action appropriate to the worlds

www.manaraa.com

over(b)

MOVE

top

RAISE

RAISE

predicate

action

root of subplanp

p

top

RAISE

OPEN

~holding(a)

~on(a,none)

on(a,b)

LOWER

clear(b)
holding(a)
over(b)

holding(a)

GRASP

around(a)

LOWER

clear(a) wide over(a)

clear(b)

RAISE

on(c,b) holding(c)

wide

OPEN

holding(none)

OPEN

holding(c) on(c,table)

Figure 4: Part of the universal plan for stack(a,b).on(a,b) top no-opon(a,b) ~top ~holding(a) raiseon(a,b) ~top ~~holding(a) open~on(a,b) clear(b) holding(a) over(b) lower~on(a,b) clear(b) holding(a) ~over(b) top lateral~on(a,b) clear(b) holding(a) ~over(b) ~top raise~on(a,b) clear(b) ~holding(a) ..2..~on(a,b) ~clear(b) ..3..Figure 5: World state partitions in stack(a,b).described. This procedure involves a \method of as-sumed preconditions". Beginning with the root nodeconditions, assume them to be true, and note that noaction is necessary. Now proceed backwards along theroot node conditions, assuming them to be false, andin each case see what action is necessary to reverse thefalsi�ed condition. Assume the preconditions of thisaction (if any) to be satis�ed. This generates a partialworld description in which the action is appropriate.Now assume that the preconditions of the selected ac-tion are false... and so on, recursively. The result isshown in Figure 5.Of course, for e�ciency's sake the interpreter testsnot these world models but the individual conditions

on(a,b) ?T) top ?. T) no-op. F) ~holding(a) ?. T) raise. F) openF) clear(b) ?T) holding(a) ?. T) over(b) ?. . T) lower. . F) top ?. . T) lateral. . F) raise. F) ..2..F) ..3..Figure 6: Decision tree form of stack(a,b).comprising them. The partial world descriptions can infact be reorganized into a decision tree which allows theinterpreter to test only the conditions actually requiredto select the currently appropriate action, and thoseconditions are evaluated only once. The decision treefor the stack(a,b) plan is shown in Figure 6.Once the currently appropriate action has been de-termined, it can be executed continuously until thetruth value of some predicate changes, in which casethe decision tree must be traversed again from thatpredicate down to determine the new reaction. In thesimplest case, only the last false condition in the ac-tive path will change to true, indicating that the cur-rent action has achieved its postconditions, and lead-ing to what would be the next step for a classical se-quential plan. It is also possible that some conditionchanges higher up in the tree. This corresponds eitherto serendipity or to sabotage.The decision tree form makes obvious the fact thatevery possible world state is provided for somewhere,simply because both outcomes of every predicate areclassi�ed eventually. Hence the name, \universalplan". An immediate consequence is that universalplans have no preconditions: they always apply. Thekind of composition that produces universal plans isvery di�erent from the concatenation of sequential planfragments.The stack(a,b) decision tree is never embodied as adata structure, but is merely a convenient descriptionof how the interpreter executes a universal plan. Theuniversal plan structure is used as a template fromwhich a sequence of predicates is simultaneously ex-tracted and evaluated, following the pattern of theabove decision tree.

www.manaraa.com

3.2. HierarchyRecall that in Section 2.1 the lateraling action wasitself expressed as a universal plan. Hence, univer-sal plans can be used to construct behaviors from themost primitive levels up. Equally importantly, it fol-lows that something viewed as an \action" by thestack(a,b) plan can in fact be another universal plan.The ability to reuse a universal plan as a primitive re-action at a higher level gives us a form of abstraction:the planner can remain ignorant of the conditions usedwithin lateral. Now it is easy to see that abstractioncan also continue upwards beyond the stacking of in-dividual blocks. The plan to build a tower of threeblocks can be translated into the decision tree:on(c,table) ?T) on(b,c) ?. T) on(a,b) ?. . T) no-op. . F) stack(a,b). F) stack(b,c)F) unstack(c)By determining the currently appropriate block trans-fer action, and hence the currently appropriate armmotion, and hence the currently appropriate feedbackconstraint, this plan will achieve the a,b,c tower fromany initial state, and no matter what serendipity orsabotage occurs in the meantime. Notice also thatthis is the �rst plan representation capable of capturingthe intuition that block towers should always be builtbottom-up. Sequential plan representations provide noway to express this general heuristic, forcing it to be-come part of the planner's domain speci�c knowledgeinstead.3.3. CompetenceIn principle, once we have a universal plan for a non-conjunctive goal G (such as holding(a)) we actuallyhave two ways to achieve G: the plan, and the \primi-tive" action A (in this case, grasp) that �nally bringsabout G. How do we know which one to use if G be-comes a goal in subsequent planning?This problem is an artifact of poor plan representa-tions such as the traditional sequential one. Remem-ber however that a universal plan is applicable in anyinitial situation. In particular, the universal plan P toachieveG applies also in situations to whichA applies,whereasA's applicability remains restricted by its pre-conditions. Consequently A, as a means of achievingG, is completely superseded by P, and might as wellbe forgotten. The construction of a universal plan rep-resents a major increase in competence.

4. Plan SynthesisThe planner builds a universal plan by back-chainingfrom the goal condition, using the e�ect descriptions asgoal reduction operators. There is a subtle di�erencefrom ordinary back-chaining, however: when a precon-dition becomes the goal of subsequent back-chaining,the negation of that precondition must be true of allthe situations occurring in that subplan. That is, thesubplan to achieve on(a,b) need only consider worldsin which on(a,b) is not true. This is the planning-timeversion of the execution-time \method of assumed pre-conditions". Back-chaining terminates when the accu-mulation of goals above the current locus of control ei-ther forces the satisfaction of the preconditions beingexamined, or leads to contradiction. It is not neces-sary to consider each possible world state individually:the planner may assign the same reaction to groups ofstates, considered en masse in the form of a world stateschema. Hence, universal plan synthesis is at least ase�cient as synthesizing linear plans (see Section 6.1).Whenever an e�ect description has multiple precon-ditions, goal conicts are possible. The reasoning re-quired to resolve goal conicts is complicated by boththe new plan representation and the multiplicity of ef-fects per action. Details must be left for another paper.Identifying preconditions with goals at planningtime can be continued into execution time. When thedecision-tree version of universal plan execution appliespredicates to the environment, every false predicate isa failed precondition and hence a planning-time goal.Thus, the locus of control at execution time explicitlydetermines the goals being pursued, so that even theagent's goals are subject to the environment.5. Related WorkMy experience with using George�'s ProceduralReasoning System (PRS) (George�&Bonollo 1983;George� et al 1985) to control an autonomous mobilerobot (George� et al 1985) was seminal for this work.The goal of that project was to reduce the amountof advance planning, and hence of advance over-commitment, by decomposing behaviors (by hand) intosequences of goals, and by selecting at run-time thebehavior to achieve each goal. In some respects theproject succeeded: in navigating the robot around ano�ce building, the planner's oor map became a con-nection graph, containing no advance knowledge at allabout widths of hallways and distances between door-ways. That information was acquired en route fromsensory input. In other respects, however, progresswas less than satisfactory. If the robot sensors saw adoorway where none existed it would get stuck justas helplessly as if it had been measuring distance. It

www.manaraa.com

succeeded in eliminating dead reckoning by distancemaps only to have it reappear as dead reckoning byconnection graphs.3 Armed with our knowledge of uni-versal plans, we can now see that the PRS work didnot go quite far enough in its attempt to achieve reac-tivity: it experimented with situation-dependent selec-tion of means to achieve goals, but not with situation-dependent adoption and abandonment of goals. Thefundamental di�culty was the rigidity of PRS's proce-dural control structure. Nevertheless, PRS's ability toeliminate dead reckoning from lower abstraction levelswas instructive, and on subsequent analysis pointed tothe importance of having actions whose duration de-pends on the sensed environment, and to a robotics-oriented view of motion.The REX project (Rosenschein 1985; Kaelbling1986) was equally inuential: the behavior of a situ-ated automaton is always contingent on the state of theenvironment. Indeed, the contingency assumes pre-cisely the forms I have adopted for universal plans,with continuously evaluated predicates determiningwhich numeric feedback function should be executed.My approach di�ers from that of the REX team inthat universal plans are produced automatically, andare therefore symbolic and highly constrained struc-turally, while REX automata are hand-coded. Indeed,symbolic representation of a REX automaton's knowl-edge is considered not only superuous but undesir-able; instead, the automaton's state is a function of theentire contents of its memory. This lack of symbols issomewhat disconcerting from a planning point of view.The REX project is emphasising analysis of the infor-mation content of situated automata synthesized byhand; I am emphasising the automatic synthesis andcontrol of reactive behavior.Triangle tables (Fikes et al 1972; Nilsson 1985) aresynthesized by extracting, from a conventional linearplan, the set of expected world states and the set ofneeded operators, then reorganizing the predicates in-volved to form an index into that set of operators. Thisreorganization increases the competence of the originalplan, from coping with a speci�c set of situations in aspeci�c order to coping with that set of situations inany order. Thus, triangle tables were �rst to give theenvironment a hand in selecting the operator to beperformed next. That in itself is not su�cient (see mycomments on PRS above), but it is a quirk of the rigid-ity of linear plans that selecting an operator instancealso selects a control state. Serendipitously, triangle ta-bles allow the environment to dictate the interpreter's(apparent) goals. That feature is crucial, and has been3I am indebted to Ken Dove of Advanced Decision Sys-tems for the wording of this observation.

made explicit by universal plans.6. Critique6.1. Computational ComplexityUniversal plans not only anticipate every possible situ-ation in a domain but actually prescribe an action forevery initial state; moreover, the prescribed action isusually optimal. These remarks suggest that universalplans must be limited to very small problem spaces.Universal plan synthesis is not a graph search prob-lem, however. The blocks world as I solved it has >400possible world states, but the planner makes use ofpredicates and e�ect descriptions to decompose theproblem space. In fact, universal plan synthesis iscloser to a classi�cation problem: given a set of pos-sible situations, with an appropriate reaction alreadyassigned to each situation, what is the complexity ofproducing a decision tree? In the best case the ef-fort required to classify n distinct situations may beO(log(n)). Only in the worst case, when each possi-ble situation must be classi�ed at a di�erent leaf node,does the classi�cation e�ort become O(n). For com-parison, the total e�ort expended by a planner thatproduced a new plan for each initial situation wouldbe O(n) at best.6.2. Blocks World ProblemsThe current planner relies on a STRIPS-like e�ectsrepresentation, restricting the plans to domains rep-resentable as state spaces, but this is not necessar-ily as serious as contemporary AI milieu might think.Clearly, in my case the state space representation hasnot condemned me to a static and predictable environ-ment, nor to dead reckoning, nor to complete knowl-edge of every world state considered. Such limitationsare artifacts of the reasoning engine, not of the problemrepresentation.Neither have I been condemned to instantaneous ac-tions and discrete worlds. State spaces may be inad-equate to reasoning about continuous processes, butwhen sensory information is exploited to control boththe current action and the manner of its performance,the increased behavioral competence removes much ofthat burden from the reasoning engine. The inabil-ity to respond to continuous stimuli is an artifact ofsensory deprivation.6.3. The Sensing BottleneckSensing is the only reliable means to obtain feedbackfrom the environment, but for many kinds of sensor,the rate at which readings can be converted to usableinformation is relatively slow. Universal plan execu-tion, however, relies on sensory feedback continuously,

www.manaraa.com

and needs predicates from a variety of sources. Theproblems are aggravated in domains requiring knowl-edge of objects other than the robot itself, such as thelocations of blocks when those locations cannot be con-trolled.If some predicate can only be evaluated infrequently,only domain-dependent considerations can determinehow the robot should proceed in the meantime. Itmay turn out that predicates near the root of the uni-versal plan are less crucial, for example, or that it ismore e�ective to temporarily ignore the values of somepredicates than to monitor them closely. At least thedecision tree form of universal plans makes very clearwhat predicates are relevant to each reaction, and somay facilitate the determination of how to proceed ateach point. This in itself is a useful contribution.7. SummaryThis paper has shown how to integrate goal-directedplanning with situation-driven reaction in the case ofrobotic motion, namely by rede�ning plans so as toeliminate the over-commitment, inherent in procedu-ral representations, to a particular course of events.Given suitable sensory input, the resulting plan repre-sentation generates appropriate behaviors even in un-predictable environments, allowing the environment todetermine the robot's current goals. This achievementencourages a new perspective on planning as choosingreactions for situations that might arise, and on plansas never guaranteeing success. The universal planstructure replaces procedural indexing with sensoryindexing; makes explicit the conditions under whichactions are applicable; renders notions of success andfailure irrelevant at execution time; and encourages hi-erarchy. AcknowledgementsThis work has been supported in part by an internalR&D grant from Advanced Decision Systems. I es-pecially appreciate the encouragement they providedwhen my ideas were still emerging. Thanks also to StanRosenschein, Mike George�, Amy Lansky and LeslieKaelbling (SRI AI) for allowing me to participate intheir progress, and to John Myers (SRI Robotics) forbeing a constructive critic of a �rst draft.ReferencesM. Bratman. Intentions, Plans and Practical Reason.Harvard University Press, forthcoming.S. Stich. From Folk Psychology... Harvard UniversityPress, 198?.M. George� and U. Bonollo. Procedural expert sys-tems. Proc 8th IJCAI, 1983, 151�.

M. George�, A. Lansky and P. Bessiere. A procedurallogic. Proc 9th IJCAI, 1985.M. George�, A. Lansky and M. Schoppers. Reason-ing and planning in dynamic domains: an experimentwith a mobile robot. Tech Note 380, AI Center, SRIInternational, 1986.M. Ginsberg. Counterfactuals. Proc 9th IJCAI, 1985,80-86.R. Fikes, P. Hart and N. Nilsson. Learning and ex-ecuting generalized robot plans. AI Journal 3, 1972,251�.N. Nilsson. Triangle tables: a proposal for a robotprogramming language. Tech Note 347, AI Center,SRI International, 1985.S. Rosenschein. Formal theories of knowledge in AIand robotics. New Generation Computing 3, 1985,345-357.L. Kaelbling. An architecture for intelligent reactivesystems. Proc Workshop on Planning and Reasoningabout Action, 1986, AAAI.D. McAllester. A three-valued truth maintenance sys-tem. Memo 473, MIT AI Lab, 1978.N. Sridharan and F. Hawrusik. Representation of ac-tions that have side e�ects. Proc 5th IJCAI, 1977,265�.

